
Conical Partition Algorithm for Maximizing the Sum

of dc Ratios

YANG DAI1;*, JIANMING SHI2;* and SHOUYANG WANG3;*
1Department of Bioengineering (MC063), The University of Illinois at Chicago, 851

S. Morgan Street, Chicago, IL 60607-7052, USA (e-mail: yangdai@uic.edu).2Department of
Computer Science and Systems Engineering, Muroran Institute of Technology, 27-1
Mizumoto-cho, Muroran 050-8585, Japan (e-mail: shi@csse.muroran-it.ac.jp).3Academy of
Mathematics and Systems Sciences, Chinese Academy of Sciences, Zhongguancun, Beijing

100080, China (e-mail: swang@iss04.iss.ac.cn).

(Received 30 March 2004; accepted in revised form 1 April 2004)

Abstract. The following problem is considered in this paper: maxx2Df
Pm

j¼1 gjðxÞjhjðxÞg, where
gjðxÞP 0 and hjðxÞ > 0; j ¼ 1; . . . ;m; are d.c. (difference of convex) functions over a convex

compact set D in Rn. Specifically, it is reformulated into the problem of maximizing a linear
objective function over a feasible region defined by multiple reverse convex functions. Several
favorable properties are developed and a branch-and-bound algorithm based on the conical

partition and the outer approximation scheme is presented. Preliminary results of numerical
experiments are reported on the efficiency of the proposed algorithm.

AMS Subject Classifications: 90C32, 90C30, 65K05.

Key words: cutting plane, fractional programming, global optimization, outer approxima-

tion, sum of ratios.

1. Introduction

Many problems arising in engineering, economics, management science,
and other disciplines can be stated as the problem of optimizing a sum of
ratios of functions (the sum of ratios problem) [29]. Due to the general
importance of this form of optimization, both in theory and in applica-
tions, fractional programming has received growing emphasis during the
last three decades. One can find the details of this development in refer-
ences [6, 24, 29] and the corresponding bibliographies appearing therein.
In this paper, we consider the following specific problem:

ðPÞ max fðxÞ :¼
Xm

j¼1

gjðxÞ
hjðxÞ

s.t. x 2 D;

�
�
�
�
�
�

ð1Þ
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where 0Ogj : Rn 7!R and 0 < hj : Rn 7!R are d.c. (difference of convex)
functions for j ¼ 1; . . . ;m, and D is a convex, compact, nonempty subset of
Rn. It is well known that every function in C2 is d.c. [13], and several
classes of problems in fractional programming can be reduced to (P).
By d.c. function, we mean that gj :¼ gj1 � gj2 and hj :¼ hj1 � hj2 for some

convex functions gjk : Rn 7!R and hjk : Rn 7!R; j ¼ 1; . . . ;m; k ¼ 1; 2: If
gj2 � 0 and hj2 � 0 for all j, then both gj and hj become convex. Moreover,
the problem (P) with m � 1 and g11 � 0 and h12 � 0 is called the concave
single-ratio fractional (CSF) programming problem. Although there exists
an abundance of publications on the study of fractional programming,
most of them are concentrated on the CSF problem, especially on the lin-
ear case. The problem (P) considered here is much more difficult to treat
than the single-ratio problem.
A canonical strategy for solving a single-ratio problem maxfgðxÞ=

hðxÞjx 2 Dg is the so-called parametric method, a procedure which
attempts to find the root k� of the following equation:

pðkÞ :¼ max
x2D
ðgðxÞ � khðxÞÞ ¼ 0:

The validity of this method is based on the fact that k� is the optimal
value of (P) if and only if pðk�Þ ¼ 0. It is easy to see that the function pðkÞ
has the following properties: pðkÞ is continuous; pðkÞ is nonincreasing and
convex, and there exist two positive points k� and kþ such that pðk�ÞO0
and pðkþÞP0. With these properties and under certain conditions, algo-
rithms for the determination of the root of pðkÞ ¼ 0 using, for example,
the bisection and the Newton-like methods can be designed. Many results
on this scheme can be found in [8, 14, 19, 28], and details dealing with the
quadratic case are given in [15, 26]. Notwithstanding these results, the
method of solution cited above can not be extended to the sum of ratios
problem [9].
The sum of ratios problem has been studied by many researchers; this

group includes Cambini et al. [2], Chen et al. [4], Falk and Palocsay [9],
Konno and Kuno [16], Konno and Yamashita [17], Kuno [18], Ritter [20],
and others. However, most of the corresponding studies are confined to
the linear case, namely, the sum of linear ratios with linear constraints.
Recently, Freund and Jarre [10] proposed an interior-point approach for
the convex–concave ratios with convex constraints. However, since their
algorithm is based on the structure of the convex–concave ratios, it is diffi-
cult to apply that method directly to our problem.
In their paper [3], Charnes and Cooper introduced an epi-multiple trans-

formation for a linear fractional programming problem. Schaible adapted
it to solve the concave single-ratio case [22, 23]. After transformation, the
objective function becomes concave, while the feasible region remains
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convex. Therefore, the concave fractional programming is transformed into
a corresponding concave programming, thereby rendering it solvable by
concave programming methods. This approach could be further exploited
to solve our problem, however, it requires the introduction of an exces-
sively large number of new variables in order to give an equivalent repre-
sentation of the problem.
The goal of this research is two-fold. First, we present a transformation

of the problem based on an equivalent d.c. representation of the ratios.
The properties of the d.c. constraints are further studied, and they enable
us to recast the original problem in terms of maximizing a linear objective
function over a convex set with several reverse convex constraints in an
ðnþ 6mÞ-dimensional space. Second, we propose a branch-and-bound algo-
rithm based on the conical partition and the outer approximation. On the
basis of an appropriate decomposition of the structure of the problem, we
are able to perform the conical partition in the ðnþ 6Þ-dimensional space,
a process that requires much less computational effort comparing to the
conical partition in the ðnþ 6mÞ-dimensional space.
The remainder of the paper is organized as follows. Section 2 intro-

duces the method for the transformation mentioned above. In Section 3,
we review the algorithm for the linear programming with several reverse
convex constraints and present the modified algorithm to the problem
(P) with a polytope D. We develop a solution method in Section 4 and
based on the method, Section 5 describes our new algorithm based on
the conical partition and the outer approximation method; it also dis-
cusses its validity and convergence. Section 6 gives an illustrative exam-
ple for the proposed algorithm and indicates the implementation
information in detail. A brief conclusion is provided in Section 7 which
outlines some potential extensions.

2. The Equivalent Transformation

Throughout this paper, for the sake of convenience in our discussion, we
assume that the feasible region D of the problem (P) is defined by a convex
function d, i.e., D :¼ fx 2 RnjdðxÞO0g. Without loss of generality, we
assume further gjðxÞP0 for j ¼ 1; . . . ;m: In fact, since hjðxÞ > 0 for all
x 2 D; j ¼ 1; . . . ;m; and

max
Xm

j¼1

gjðxÞ
hjðxÞ

() max
Xm

j¼1

gjðxÞ
hjðxÞ

þMj () max
Xm

j¼1

gjðxÞ þMjhjðxÞ
hjðxÞ

;

by choosing a sufficiently large value Mj > 0, the numerators gjðxÞþ
MjhjðxÞ are always nonnegative. By introducing three extra variables yj; zj
and sj; j ¼ 1; . . . ;m, we rewrite (P) as follows:
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(P)

max
Pm

j¼1
sj

s.t. gjðxÞP yj; for j ¼ 1; . . . ;m;

hjðxÞO zj; for j ¼ 1; . . . ;m;
yj
zj

P sj; for j ¼ 1; . . . ;m;

dðxÞO 0:

�
�
�
�
�
�
�
�
�
�
�
�
�

ð2Þ

Note that for zj > 0;

yj
zj

P sj () 2yj P ðzj þ sjÞ2 � ðz2j þ s2j Þ

for j ¼ 1; . . . ;m:
Assume that gjðxÞ � g0jðxÞ � g00j ðxÞ and hjðxÞ � h0jðxÞ � h00j ðxÞ for some

convex functions g0jðxÞ; g00j ðxÞ; h0jðxÞ and h00j ðxÞ. Then (2) can be written in
the following form.

(P)

max
Pm

j¼1
sj

s.t. g0jðxÞ � g00j P yj; for j ¼ 1; . . . ;m;

h0jðxÞ � h00j ðxÞO zj; for j ¼ 1; . . . ;m;

2yj � ðzj þ sjÞ2 þ z2j þ s2j P0; for j ¼ 1; . . . ;m;

dðxÞO0:

�
�
�
�
�
�
�
�
�
�
�
�
�

ð3Þ

This program has a linear objective function with ð3mþ 1Þ constraints and
ðnþ 3mÞ variables. In his paper [27], Shi considered the following epi-
multiple functions:

Gðx; kÞ :¼
kgðk�1xÞ if k > 0,
0 if k ¼ 0; x ¼ 0;
�1 otherwise

8
<

:
ð4Þ

in order to rewrite the objective function gðxÞ
hðxÞ as a convex function for sin-

gle-ratio fractional programming. The transformation (2) is considerably
less complex than the epi-multiple-based method proposed in [27], a proce-
dure which needs ðnþ 3Þm variables for a similar d.c. representation. In
(3), the objective function is linear and the constraints are of d.c. type.
Therefore, it is a d.c. optimization problem, i.e., the maximization of a lin-
ear function over a compact d.c. set. In fact, the introduction of the new
variables uj; vj and wj allows the restatement of (3) as follows:

256 Y. DAI ET AL.



(P)

max
Pm

j¼1
sj

s.t. g0jðxÞ � uj � yjP0; for j ¼ 1; . . . ;m;

g00j ðxÞ � ujO0; for j ¼ 1; . . . ;m;

h0jðxÞ � vj � zjO0; for j ¼ 1; . . . ;m;

h00j ðxÞ � vjP0; for j ¼ 1; . . . ;m;

z2j þ s2j þ 2yj � wjP0; for j ¼ 1; . . . ;m;

ðzj þ sjÞ2 � wjO0; for j ¼ 1; . . . ;m;

dðxÞO0:

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

ð5Þ

All functions on the left-hand side of the constraints of (5) are convex. Espe-
cially, the statements g0jðxÞ � uj � yjP0; h00j ðxÞ � vjP0 and z2j þ s2j þ 2yj �
wjP0 for j ¼ 1; . . . ;m are called reverse convex constraints;. The feasible
region of (5) consists of ð3mþ 1Þ convex constraints and 3m reverse convex
constraints. Accordingly, we have a total of ðnþ 6mÞ variables. Define that

G�j :¼ fðx; yj; zj; sj; uj; vj;wjÞ 2 Rnþ6jg0jðxÞ � uj � yj < 0g;
Gj :¼ fðx; yj; zj; sj; uj; vj;wjÞ 2 Rnþ6jg00j ðxÞ � ujO0g;
H�j :¼ fðx; yj; zj; sj; uj; vj;wjÞ 2 Rnþ6jh00j ðxÞ � vj < 0g;
Hj :¼ fðx; yj; zj; sj; uj; vj;wjÞ 2 Rnþ6jh0jðxÞ � vj � zjO0g;
C�j :¼ fðx; yj; zj; sj; uj; vj;wjÞ 2 Rnþ6jz2j þ s2j þ 2yj � wj < 0g;
Cj :¼ fðx; yj; zj; sj; uj; vj;wjÞ 2 Rnþ6jðzj þ sjÞ2 � wjO0g;
D :¼ fðx; yj; zj; sj; uj; vj;wjÞ 2 Rnþ6jdðxÞO0g:

ð6Þ

By using (6), we can rewrite (5) as

(P)

max
Xm

j¼1
sj

s.t. ðx; yj; zj; sj; uj; vj;wjÞ 2 Gj \Hj \ Cj \D;
ðx; yj; zj; sj; uj; vj;wjÞ j2 G�j [H�j [ C�j ;

for j ¼ 1; . . . ;m:

�
�
�
�
�
�
�
�
�
�
�
�
�

ð7Þ

For the simplicity, we denote -j :¼ ðyj; zj; sj; uj; vj;wjÞ and -�j :¼ ðy�j ; z�j ; s�j ;
u�j ; v

�
j ;w

�
j Þ for all j. For a set S, denote the boundary of S by @S. Under

removal of the reverse constraints, problem (7) becomes a convex program,
which is polynomial solvable. Therefore, without loss of generality, we
assume that

(A1) there exist an index j0 2 f1; . . . ;mg and a point ðx?;-?
1; . . . ;-

?
mÞ with

ðx?; y?j ; z?j ; s?j ; u?j ; v?j ;w?j Þ 2 ðGj \Hj \ Cj \DÞ [ ðG�j0 [H�j0 [ C�j0 Þ for all j
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satisfying
Pm

j sj <
Pm

j s�j for any ðx;-1; . . . ;-mÞ in the feasible region of

(7).

The next lemma plays hereafter a crucial role in our algorithm.

LEMMA 1. If problem (7) has an optimal solution ðx�;-�1; . . . ;-�mÞ then
ðx�;-�j Þ 2 @ðG�j [H�j [ C�j Þ for j ¼ 1; . . . ;m.

Proof. Suppose that ðx�;-�1; . . . ;-�mÞ is an optimal solution of problem
(7) and that ðx�;-�j0Þ j2@ðG

�
j0
[H�j0 [ C�j0 Þ for some j0:

Consider a point

pðtÞ :¼ ðx�;-�1; . . . ;-�mÞ þ t½ðx�;-�1; . . . ;-�mÞ � ðx�;-�1; . . . ;-�mÞ�

for 0OtO1. From the assumption that pð1Þ 2 ðG�j0 [H
�
j0
[ C�j0 Þ and

pð0Þ 62 ðG�j0 [H
�
j0
[ C�j0 Þ, there must exist some t0 2 ð0; 1Þ such that

pðt0Þ 2 @ðG�j0 [H
�
j0
[ C�j0 Þ, and pðt0Þ 6¼ pð0Þ. Denote the objective function

value of problem (7) at pðtÞ by FðpðtÞÞ. Since the objective function is lin-
ear, we have

Fðpð0ÞÞ < Fðpðt0ÞÞ:
This contradicts the fact that Fðpð0ÞÞ is the optimal value of problem
(7). (

3. Linear Programming with Several Reverse Convex Constraints

In this section, we review a method of global optimization proposed by
Dai et al. [7] for the solution of a linear programming problem with several
reverse convex constraints. Consider the problem maxfbxjx 2 D; fjðxÞP
0; j ¼ 1; . . . ;mg, where D is a polytope in Rn and fjðxÞ; j ¼ 1; . . . ;m; are
convex. Define Cj ¼ fxj fjðxÞ < 0; j ¼ 1; . . . ;mg. Then Cj; j ¼ 1; . . . ;m; are
open and convex. This problem can be represented as follows.

(P)

max bx
s.t. x 2 D;

x j2 [mj¼1 Cj:

�
�
�
�
�
�

ð8Þ

If there exists an interior point x0 of the set \mj¼1Cj, then the approach pro-
posed in [7] can be used to approximate the feasible region by a concavity
cut reduction. The algorithm is a combination of the conical branch-and-
bound scheme and the concavity cut reduction. In order to use the polyhe-
dral inner approximation and the conical partition, we enlist the following
two assumptions:
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ðA2Þ int ðD n [mj¼1CjÞ 6¼ ;:

ðA3Þ \mj¼1 Cj 6¼ ; and a point x0 2 \mj¼1Cj is available.

Let x0 and Rayi ¼ frimjm ¼ 1; . . . ; ng be nþ 1 affinely independent points,
we define

coneðx0;RayiÞ :¼ x x ¼
Xn

m¼1
aimðrim � x0Þ þ x0; aim P 0

�
�
�
�
�

( )

:

or coneðRayiÞ or ci simply.
Before describing the algorithm, we establish certain notations. Let C be

a collection of cones fc1; . . . ; cpg as defined above. Such a collection C is
called a conical partition of a given set D if [pi¼1 ðci \DÞ ¼ D and
intðciÞ \ intðcjÞ ¼ ; for all i 6¼ j. We say a partition C0is a refinement of C if
for any cone c0 2 C0 there exists a cone c 2 C such that c0 � c. A refinement
process is called exhaustive if for every strictly nested sequence fckgk¼1;2;...;
satisfying ck 2 Ck and ckþ1 � ck for every k, there exists a half-line R ema-
nating from x0 such that

fx 2 Rnj lim inf
k!1

dðx; ckÞ ¼ 0g ¼ fx 2 Rnj lim
k!1

dðx; ckÞ ¼ 0g ¼ R; ð9Þ

where dðx; ckÞ :¼ inf y2ck dðx; yÞ, and dðx; yÞ denote the Euclidean distance
between points x and y.
Fix a convex set Cj and a point x0 2 Cj. We denote the intersection

point of the mth ray fxjx ¼ aðrim � x0Þ þ x0; a P 0g of ci and the boundary
@ðCjÞ of Cj by tmðCj; ciÞ or tm for m ¼ 1; . . . ; n. Moreover, define the hyper-
plane H and the half-plane Hþ respectively as follows:

HðCj; ciÞ :¼ x x ¼
Xn

m¼1
aimtm;

X

m¼1
aim ¼ 1; aimP0

�
�
�
�
�

)(

and

HþðCj; ciÞ :¼ x x ¼
Xn

m¼1
aimtm;

X

m

aimP1; aimP0

�
�
�
�
�

)

:

(

:

Given a cone ci, a convex compact set D, and an open convex set Cj, we
have

ci \ ðD n CjÞ � ðD \ ciÞ \HþðCj; ciÞ: ð10Þ
The following lemma is of basic importance for the calculation of an upper
bound of the objective function over a cone.

LEMMA 2. For the convex sets C1; . . . ;Cm and a fixed cone ci,

ci \ ðDn [mj¼1 CjÞ � ðD \ ð\mj¼1HþðCj; ciÞÞÞ \ ci;

under Assumption(A3).
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Proof. Directly from (9). (
We denote the relaxed convex feasible region over ci by

FðciÞ :¼ ðD \ ð\mj¼1HþðCj; ciÞÞÞ \ ci: ð11Þ

It is straightforward that

maxfbxjx 2 D;x 62 [mj¼1Cj; x 2 cigOmaxfbxjx 2 FðciÞg:

Now we are all ready to present the algorithm.

ALGORITHM MRC (For Optimization with Multiple Reverse Convex
Constraints)

Step 0. Compute the point x0 and construct a conical partition
C ¼ fc1; . . . ; cpg of D. Set tolerance e. Set M :¼ fð1; . . . ; pÞg; k :¼
0;L :¼ �1;U :¼ 1.

Step 1. Select a l from M. Calculate Ul :¼ maxfbxjx 2 FðclÞg. and
xk :¼ argmaxfbxjx 2 FðclÞg.

Step 2. If Ul OL then delete l from M and goto Step 1. Otherwise cal-
culate a lower bound Ll of bx over FðclÞ.

Step 3. If Ll > L then L :¼ Ll; Delete all j from M with Uj � L < e; If
M¼ ; then stop; x� :¼ xk is an optimal solution.

Step 4. Divide cl into cpþ2k and cpþ2kþ1. Let M :¼ ðfMgnflgÞ [ fpþ 2k;
pþ 2kþ 1g: k :¼ kþ 1: go to Step 1.

Unlike the general rectangle-based branch-and-bound approaches, one
of the favorable properties of ALGORITHM MRC is its ability to cut off
an infeasible region deeply. The computational cost of this advantage is
the calculation of the points tmðCj; ciÞ. Since Ciði ¼ 1; . . . ; pÞ are convex sets,
we can employ a convex optimization to obtain the points tmðCj; ciÞ appear-
ing in the definitions of FðciÞ and HþðCj; ciÞ.
In Step 2, we calculate a lower bound Ll of bx over FðclÞ for a fixed

cone cl. A heuristic way to achieve this goal is to calculate the value

Ll :¼ maxfbxjx ¼ tmðCj; clÞ; x 2 D; m ¼ 1; . . . ; n; j ¼ 1; . . . ;mg: ð12Þ
It is easy to see that if all n points tmðm ¼ 1; . . . ; nÞ for every Cj are infeasi-
ble, then there is no feasible point in cl; accordingly, we set Ll :¼ �1.
When LObtmðCi; clÞ for all m and i, we can remove cone cl from further
consideration.
In Step 4, we divide cl into cpþ2k and cpþ2kþ1. Many exhaustive dividing

processes, for instance, bisection and w-dividing methods [12], can be used
here.

THEOREM 3. (Theorem 3.7 of [7]) Assume that the conical partitions in
ALGORITHM MRC are exhaustive. Then every cluster point of the
sequence fxkg is an optimal solution of the problem (8).
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4. Solution Method

Now we return to problem (6) or the corresponding compact form (7). The
difference between (7) and (8) is that (7) contains a general convex set. This
makes it impossible to use the algorithm of the previous section. In order
to circumvent this limitation, a set of linear inequalities can be used for the
approximation. Moreover, an appropriate decomposition of the convex set
in (7) can be employed to enable efficient design of the algorithm. We will
address these issues in this section.
As stated above, Assumption (A3) is fundamentally crucial for

ALGORITHM MRC. Without this assumption, difficulty in generating the
conical partition for the feasible region may be encountered.

LEMMA 4. Assumption (A3) is satisfied for the problem (8).

Proof. We use the representation of (6) for obtaining such a point in
(A3). Take an arbitrary point x from D. We can select uj and vj such that
ðx; �; �; �; uj; vj; �Þ is in Gj and H�j for all j. With ðx; �; �; �; uj; vj; �Þ, we take a
suitable positive zj such thatðx; �; zj; �; uj; vj; �Þ 2 Hj. Notice that the variable
zj is free in the previous two sets Gj and H�j . Therefore, the selected point
is contained in the two sets. We are then ready to select positive sj and wj

such that

ðzj þ sjÞ2 � wj O 0; ð13Þ
a statement that defines Cj . Take a large yj , such that ðx; yj; zj; sj; uj; vj;
wjÞ 2 H�j . Note that a large yj may violate the inequality

z 2
j þ s 2

j þ 2yj � wj < 0 ð14Þ

which defines C�j . To prevent such a potential violation, we replace wj by
wj þ 2yj. Consequently, we have the points ðx; yj; zj; sj; uj; vj;wj þ yjÞ 2
G�j \H�j \ C�j for all j that satisfy Assumption (A3). (

Since Gj \Hj \ Cj \D is not a polytope, ALGORITHM MRC can not be
directly applied to the problem (7). Hence, we use a sequence of polytopes to
approximate the convex set Gj \Hj \ Cj \D. Let P0

j be a polytope in Rnþ6

that contains Gj \Hj \ Cj \D; j ¼ 1; . . . ;m. The polytope P0
j is customarily

assumed in past studies to be defined by a system of linear inequalities. The
suitability of this assumption rests on the approximation of Gj \Hj \ Cj \D
and the easy calculation of the vertices of P0

j . For the sake of efficiency, we
assume that P0

j is a simplex in Rnþ6 and that Gj \Hj \ Cj \D is defined by a
convex function Sjðx;-jÞO0. Let VðP0

j Þ be the set of the vertices of P0
j . At

the kth iteration, we select vkj 2 argmaxfSjðvjÞjvj 2 VðPk
j Þg, where

mkj :¼ ðxk;-k
j Þ. Similarly, we denote vj :¼ ðx;-jÞ. If vkj j2Gj \Hj \ Cj \D, we

compute a subgradient Bjðmkj Þ of Sj at v
k
j and let
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‘kj ðmjÞ ¼ ðmj � mkj ÞBjðmkj Þ þ Sðmkj Þ:

The inequality

‘kj ðmjÞO 0

contains every feasible point of (7) but mkj . By setting

Pkþ1
j :¼ Pk

j \ fmjj‘kðmjÞO 0g;

we can generate a nested sequence of polytopes fPkgk¼1;2;... such that � � � �
Pkþ1

j � Pk
j � � � � and

lim
k!1
Pk

j ¼ Gj \Hj \ Cj \D

for all j. Suppose VðPk
j Þ is available. Then VðPkþ1

j Þ can be calculated by
the algorithms such as in [5].

LEMMA 5. Suppose mkj 2 Pk
j and limk!1 mkj ¼ m�j , then m�j 2 Gj \Hj \ Cj \D.

Proof. From Lemmas 3.2 and 3.5 of [7], we know that ‘kj ðmjÞ are uni-
formly equicontinuous and that there exists a continuous function ‘j such
that

lim
k!1

‘kj ðmkj Þ ¼ lim
k!1

‘kj ðmkþ1j Þ ¼ ‘jðm�j Þ:

We observe that ‘kj ðmkj ÞO0 and ‘kj ðmkþ1j ÞP0. Therefore, ‘jðm�j Þ ¼ 0. Hence,
by Lemma 3.4 of [7], we have m�j 2 Gj \Hj \ Cj \D. (

5. The Algorithm and its Convergence

Based on the discussion above, we are prepared to describe our algorithm.
ALGORITHM SUMRATIOS (For Optimization of Sum of Ratios)

Step 0. Compute the point ðx0;-0
1; . . . ;-0

mÞ. Construct a polytope P0
j for

each j. Construct a conical partition Cj ¼ fc j
1 ; . . . ; c jpg of P0

j for each
jðj ¼ 1; . . . ;mÞ. Set tolerance e. SetMj :¼ f1þ jp; . . . ; ðjþ 1Þpg and
M :¼ fðl1; . . . ; lmÞjlj 2Mjg. Set k :¼ 0;L :¼ �1.

Step 1. Select a ðl1; . . . ;lmÞ from M and calculate, Uðl1;...;lmÞ ¼
max

Pm
j¼1 sjj

n
ðx; yj; zj; sj; uj; vj;wjÞ 2 FðcmjÞ; j ¼ 1; . . . ;mg: Let ðxk;

ðyj; zj; sj; uj; vj;wjÞkÞ; j ¼ 1; . . . ;m, be the optimal solution. Set

Uk ¼ Uðl1;...;lmÞ.
Step 2. If UkOL, then delete ðl1; . . . ; lmÞ from M and go to Step 1.

Otherwise calculate a lower bound Lk of
P

j sj by (12).
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Step 3. If Lk > L, then L :¼ Lk; Delete all ðl1; . . . ;lmÞ fromM such that
Uðl1;...;lmÞ � L < �; If M¼ ;, then stop. x� :¼ xk is an optimal
solution.

Step 4. Select a lj from fl1; . . . ; lmg. Divide cl into cpþ2k and cpþ2kþ1.
SetM :¼Mnfðl1; . . . ; lmÞg,M :¼M[ fðl1; . . . ;lj�1; pþ 2k;ljþ1;
. . . ; lmÞg [ fðl1; . . . ; lj�1; pþ2kþ 1;ljþ1; . . . ;lmÞg. Set k :¼ kþ 1
and go to Step 1.

The main computational tasks of the algorithm are the conical partition
and the calculation of Uðl1;...;lmÞ in Step 1. Since the problem possesses a
nice decomposition structure in the feasible region, the refinement of the
conical partition can be carried out for clj

individually (see Step 4). This
operation only involves the cone in an ðnþ 6Þ-dimensional space, which
has much lower dimensionality compared with the original ðnþ 6mÞ space.
The upper bound Uk is obtained by solving the following linear pro-

gramming in a space with ðnþ 6mÞ dimensions in Step 1 :

max
Xm

j

sj ðx; yj; zj; sj; uj; vj;wjÞ 2 Fðclj
Þ; j ¼ 1; . . . ;m

�
�
�

( )

:

Note that every Fðclj
Þ is written as a system of linear inequalities [13],

hence, the above implementation is not computationally costly.

LEMMA 6. Assume that the conical partitions in ALGORITHM SUM-
RATIOS are exhaustive and fðx�;-�1; . . . ;-�mÞ

kg is an accumulation point of
the sequence fðx?;-?

1; . . . ;-?
mÞ

kg, then m�j 62 G�j \H�j \ C�j .

Proof. See the first part of Theorem 3.7 in [7]. (

THEOREM 7. Assume that the conical partitions in ALGORITHM SUM-
RATIOS are exhaustive, then every accumulation point of the sequence
fðx;-1; . . . ;-mÞkg is an optimal solution.

Proof. Suppose that limðx;-1; . . . ;-mÞk ¼ ðx�;-�1; . . . ;-�mÞ. From Lemma
5 we see that m�j 2 Gj \Hj \ Cj [D for all j. In association with Lemma 6,
we see that ðx�;-�1; . . . ;-�mÞ is a feasible solution of problem (7). Note that
maximum value over ci is maintained from the definition of vkj in the algo-
rithm. Therefore, the ðx�;-�1; . . . ;-�mÞ is an optimal solution. (

6. An Illustrative Example

The following example [1] is used to illustrate the algorithm.
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EXAMPLE.

fðx1; x2Þ ¼
�x21 þ 3x1 � x22 þ 3x2 þ 3:5

x1 þ 1:0
þ x2

x21 � 2x1 þ x22 � 8x2 þ 20:0

That is, m ¼ 2; n ¼ 2; g1ðx1; x2Þ ¼ �x21 þ 3x1 � x22 þ 3x2 þ 3:5; g2ðx1;x2Þ ¼
x2; h1ðx1; x2Þ ¼ x1 þ 1:0; h2ðx1; x2Þ ¼ x21 � 2x1 þ x22 � 8x2 þ 20:0. The feasi-
ble region D is defined by the following linear inequalities:

D :¼ fðx1;x2Þj2x1 þ x2 O 6; 3x1 þ x2 O 8;x1 � x2 O 1;x1 P 1; x2P 2g:
ðx�1; x�2Þ ¼ ð1:00; 2:00Þ; fðx�1; x�2Þ ¼ 4:0357. Let

g01ðx1; x2Þ ¼ 3x1 þ 3x2 þ 3:5;

g001ðx1;x2Þ ¼ x21 þ x22;

h01ðx1; x2Þ ¼ x1 þ 1;

h001ðx1;x2Þ ¼ 0;

g02ðx1; x2Þ ¼ x2;

g002ðx1;x2Þ ¼ 0;

h02ðx1; x2Þ ¼ x21 þ x22;

h002ðx1;x2Þ ¼ 2x1 þ 8x2 � 20:

:

The equivalent problem (2.4) is as follows.:

max s1 þ s2
s.t. x21 þ x22 � u1O0

x21 þ x22 � v2 � z2O0
�u2O0
x1 þ 1� v1 � z1O0
ðs1 þ z1Þ2 � w1O0
ðs2 þ z2Þ2 � w2O0
2x1 þ x2O6
3x1 þ x2O8
x1 � x2O1
x1P1; x2P2

3x1 þ 3x2 þ 3:5� u1 � y1P0
2x1 þ 8x2 � 20� v2P0
x2 � u2 � y2P0
�v1P0
s21 þ z21 þ 2y1 � w1P0
s22 þ z22 þ 2y2 � w2P0

all variables are nonnegative but uj and vj; i ¼ 1; 2:

The second group of the constraints corresponds to the reverse constraints.
However, since the first four are linear, the real reverse constraints are only
the last two. Let
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vjm ¼ 47em; m ¼ 1; . . . ; 8; j ¼ 1; 2;

where em is the mth unit vector in R8. Then vjm; m ¼ 1; . . . ; 8; vj0 ¼ ½0; 0;
0; 0; 0; 0; 0; 0� 2 R8, for j ¼ 1; 2, will be the vertices of two initial polytopes
in R8 in Step 1 of the algorithm, respectively. Let

ðx01; x02; y0j ; z0j ; s0j ; u0j ; v0j ;w0
j Þ

T ¼ ð�1;�1; 1; 1;�1; 2; 2; 5ÞT; j ¼ 1; 2:

s21 þ z21 þ 2y1 � w1 ¼ �1 < 0;

s22 þ z22 þ 2y2 � w2 ¼ �1 < 0:

Therefore, they can serve as the vertices of the initial cones. For each
j ¼ 1; 2, let the extreme rays from ðx01; x02; y0j ; z0j ; s0j ; u0j ; v0j ;w0

j Þ
T be

vjm � ðx01;x02; y0j ; z0j ; s0j ; u0j ; v0j ;w0
j Þ

T; m ¼ 1; . . . ; 8:

The intersecting points of the rays with the constraint s2j þ z2j þ 2yj�
wj ¼ 0; j ¼ 1; 2, are respectively as follows:

tj1 ¼ ½47; 0; 0; 0; 0; 0; 0; 0�T;
tj2 ¼ ½0; 47; 0; 0; 0; 0; 0; 0�T;
tj3 ¼ ½�0:968442;�0:968442; 1:48323;

0:968442; 0:968442; 1:93688; 1:93688; 4:84221�T;
tj4 ¼ ½�0:978613;�0:978613; 0; 1:98378; 0:978613;

1:95723; 1:95723; 4:89307�T;
tj5 ¼ ½�0:978613;�0:978613; 0; 0:978613; 1:98378; 1:95723;

1:95723; 4:89307�T;
tj6 ¼ ½0; 0; 0; 0; 0; 47; 0; 0�T;
tj7 ¼ ½0; 0; 0; 0; 0; 0; 47; 0�T;
tj8 ¼ ½22:065; 22:065; 0;�22:065;�22:065;

� 44:13;�44:13; 973:73�T; j ¼ 1; 2:

Let

Tj ¼ ½tj1; tj2; tj3; tj4; tj5; tj6; tj7; tj8�; j ¼ 1; 2

and

aj ¼ ½aj1; aj2; aj3; aj4; aj5; aj6; aj7; aj8�T; j ¼ 1; 2:

The variables in the linear program can be represented as

ðx1; x2; yj; zj; sj; uj; vj;wjÞT ¼ Tjaj;
X8

m¼1
ajmP1; ajmP0; j ¼ 1; 2: ð15Þ
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Replacing all variables with (15) yields the following LP, whose optimal
value is an upper bound of s1 þ s2:

max 0:968442a13 þ 0:978613a14 þ 1:98378a15 � 22:065a18
þ 0:968442a23 þ 0:978613a24
þ 1:98378a25 � 22:065a28

s.t. 94a11 þ 47a12 � 2:90533a13 � 2:93584a14
� 2:93584a15 þ 66:195a18 O 6

141a11 þ 47a12 � 3:87377a13 � 3:91445a14
� 3:91445a15 þ 88:26a18 O 8

47a11 � 47a12 O 1

� 47a11 þ 0:968442a13 þ 0:978613a14
þ 0:978613a15 � 22:065a18 O �1

� 47a12 þ 0:968442a13 þ 0:978613a14 þ 0:978613a15
� 22:065a18 O �2

� 141a11 � 141a12 þ 9:23076a13 þ 7:82891a14
þ 7:82891a15 þ 47a16 � 176:52a18 O 3:5

47a11 � 3:87377a13 � 4:91962a14
� 3:91445a15 � 47a17 þ 88:26a18 O �1

0:968442a13 þ 1:98378a14 þ 0:978613a15 � 22:065a18 O 0

47a11 þ 47a12 þ 9:23076a13 þ 8:83407a14
þ 8:83407a15 þ 47a16 þ 47a17 þ 907:535a18 O 47

� 94a21 � 376a22 þ 11:6213a23 þ 11:7434a24
þ 11:7434a25 þ 47a27 � 264:78a28 O�20

� 47a22 þ 4:38855a23 þ 2:93584a24 þ 2:93584a25
þ 47a26 � 66:195a28 O 0

47a21 þ 47a22 þ 10:1992a23 þ 9:81269a24
þ 9:81269a25 þ 47a26 þ 47a27 þ 885:47a28 O 47

47a11 � 0:968442a13 � 0:978613a14
� 0:978613a15 þ 22:065a18 � 47a21 þ 0:968442a23
þ 0:978613a24 þ 0:978613a25 � 22:065a28 ¼ 0

47a12 � 0:968442a13 � 0:978613a14 � 0:978613a15
þ 22:065a18 � 47a22 þ 0:968442a23 þ 0:978613a24
þ 0:978613a25 � 22:065a28 ¼ 0

a11 þ a12 þ a13 þ a14 þ a15 þ a16 þ a17 þ a18 P 1

a21 þ a22 þ a23 þ a24 þ a25 þ a26 þ a27 þ a28 P 1

all variables are nonnegative:
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The optimal value of this problem is 5.24, and the original variables are

ðx1; x2; y1; z1; s1; u1; v1;w1; y2; z2; s2; u2; v2;w2Þ
¼ ð1:0; 4:0; 0; 0; 0:8191; 0; 2; 39:1809;

0; 0:2; 4:42177; 4:0; 4:0; 27:578Þ;

an outcome that does not satisfy the convex constraints. Since
ðx1; x2Þ ¼ ð1; 4Þ satisfies the original linear constraints, the objective value
at this point is a lower bound of the optimal objective function, which has
the magnitude 2.0833.
Next we select the first cone to divide and obtain two cones. Since

x21 þ x22 � u1 ¼ 25 > 0 at the current LP solution, the quadratic constrains

x21 þ x22 � u1 O 0 is violated. As the subgradient at the optimal solution is

ð2; 8; 0; 0; 0;�1; 0; 0; 0; 0; 0; 0; 0; 0Þ, the linear cut

2ðx1 � 1Þ þ 8ðx2 � 4Þ � u1 þ 25O 0

was added to the constraint set of the first LP after replacing the original
variables by (15).
The approximate solution can be found by repeating this procedure until
the difference between the lower and upper bounds is below some small
prescribed value e. In above example, we set e ¼ 0:01, an solution ð1:00;
2:00; 7:50; 2:00; 3:75; 5:00; 0:00; 33:06; 2:00; 7:00; 0:29; 0:00;�2:00; 53:08Þ, that
is, ðx1;x2Þ ¼ ð1:00; 2:00Þ; ðy1; z1; s1; u1; v1;w1Þ ¼ ð7:50; 2:00; 3:75; 5:00; 0:00;
33:06Þ; ðy2; z2; s2; u2; v2;w2Þ ¼ ð2:00; 7:00; 0:29; 0:00;�2:00; 53:08Þ was found
after 1016 iterations and 478 seconds.
In order to investigate the behavior of the algorithm SUMRATIOS,

another set of problems with different number of ratios were considered.
The variable x in problem ðPÞ for all test problems was 2-dimensional. All
numerators and denominators of the ratios of the test problems were quad-
ratic polynomial or linear functions. More precisely, either numerator or
denominator is quadratic for each ratio. All coefficients of the quadratic
polynomial and linear functions were random integers between �10 and
10. Figure 1 shows the results of the algorithm for this data set. Each point
is the average from three problems. The curve in Figure 1 depicts an
approximation function 26:199e1:4004x of CPU time. The algorithm was
coded in MATLAB 6.5 and tested on a Win XP PC (Xeon(TM) CPU
2.80Hz, 1.00 GB RAM). Initial points in Step 0 were calculated by the
constraints of (5). The relaxed LP subproblems in Step 1 were solved by
the procedure of linprog in Optimization ToolBox.

Remark. Preliminary numerical reports on other types of sum-of-ratios
problems can be found in the literature [18, 10]. But the algorithms in [18,
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10] are designed for maximization of sum of linear ratios and convex/
concave ratios problems, respectively. It is reported recently that Kuno’s
algorithm works well for sum of convex/concave ratios problems [25], how-
ever, its extension to the d.c. case is still under developing.

7. Concluding Remarks

A general form for the optimization of the sum of ratios, in which both
the denominator and the numerator are d.c. functions, has been dis-
cussed. In particular, the properties of the transformed problem are
examined. An algorithm designed for the solution of this problem by
the branch-and-bound algorithm that is based on the combination of
the conical partition and the outer approximation is proposed. To inves-
tigate the efficiency of the proposed algorithm, a preliminary numerical
experiment was carried out. The results indicate that the algorithm pro-
posed in this paper solves problems with small-sizes in reasonable
amount of time.
The basic question of dealing with the ratios is the key to the transfor-

mation. Benson [1] proposed to use a concave envelope to approximate the
ratio t=s, a procedure which is equivalent to gðxÞ=hðxÞ with the constraints
t ¼ gðxÞ and s ¼ hðxÞ. His original ratio has the structure of concave/con-
vex which can be ‘‘converted’’ readily to convex form by the method used
to treat the single-ratio problem. These results suggest the possible exten-
sion of the concave envelope method to the sum of ratios problem with the
structure of d.c./d.c.
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